A tour of Pathway's transformer classes
In this section, we will go through several examples of Pathway transformer classes. This should give you a good overview of how to handle them and how useful they are.
We will not go into implementation details, so you are strongly encouraged to read our introduction first.
In the following, we are going to see how to use transformer classes to perform simple operations on a single row, use transformers as a method, and use transformers to combine several tables at once.
Our guinea pig
You will experiment on the following table:
from typing import Any
import pathway as pw
guinea_pig = pw.debug.table_from_markdown(
"""
| val | aux
0 | 0 | 10
1 | 1 | 11
2 | 2 | 12
3 | 3 | 13
4 | 4 | 14
5 | 5 | 15
6 | 6 | 16
"""
)
Simple operations on a single row
First, you are going to perform simple operations on the table: adding a given number, obtaining the squared value, and performing the sum of two columns.
Adding 10 to each value:
@pw.transformer
class add_ten:
class table(pw.ClassArg):
val = pw.input_attribute()
@pw.output_attribute
def result(self) -> float:
return self.val + 10
result = add_ten(guinea_pig).table
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| result
^X1MXHYY... | 10
^YYY4HAB... | 11
^Z3QWT29... | 12
^3CZ78B4... | 13
^3HN31E1... | 14
^3S2X6B2... | 15
^A984WV0... | 16
As you can see only the column val
has been taken into account.
Obtaining the squared value of each value:
@pw.transformer
class squared_value:
class table(pw.ClassArg):
val = pw.input_attribute()
@pw.output_attribute
def result(self) -> float:
return self.val * self.val
result = squared_value(guinea_pig).table
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| result
^X1MXHYY... | 0
^YYY4HAB... | 1
^Z3QWT29... | 4
^3CZ78B4... | 9
^3HN31E1... | 16
^3S2X6B2... | 25
^A984WV0... | 36
Summing two columns
@pw.transformer
class summing_columns:
class table(pw.ClassArg):
val = pw.input_attribute()
aux = pw.input_attribute()
@pw.output_attribute
def result(self) -> float:
return self.val + self.aux
result = summing_columns(guinea_pig).table
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| result
^X1MXHYY... | 10
^YYY4HAB... | 12
^Z3QWT29... | 14
^3CZ78B4... | 16
^3HN31E1... | 18
^3S2X6B2... | 20
^A984WV0... | 22
Those three results can be obtained by a unique transformer:
@pw.transformer
class combined_transformer:
class table(pw.ClassArg):
val = pw.input_attribute()
aux = pw.input_attribute()
@pw.output_attribute
def result_add(self) -> float:
return self.val + 10
@pw.output_attribute
def result_squared(self) -> float:
return self.val * self.val
@pw.output_attribute
def result_sum(self) -> float:
return self.val + self.aux
result = combined_transformer(guinea_pig).table
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| result_add | result_squared | result_sum
^X1MXHYY... | 10 | 0 | 10
^YYY4HAB... | 11 | 1 | 12
^Z3QWT29... | 12 | 4 | 14
^3CZ78B4... | 13 | 9 | 16
^3HN31E1... | 14 | 16 | 18
^3S2X6B2... | 15 | 25 | 20
^A984WV0... | 16 | 36 | 22
Finally, you can use the new values inside the same transformer to perform more advanced operations:
@pw.transformer
class reusing_transformer:
class table(pw.ClassArg):
val = pw.input_attribute()
@pw.output_attribute
def result_add(self) -> float:
return self.val + 10
@pw.output_attribute
def result_double(self) -> float:
return self.result_add + self.result_add
result = reusing_transformer(guinea_pig).table
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| result_add | result_double
^X1MXHYY... | 10 | 20
^YYY4HAB... | 11 | 22
^Z3QWT29... | 12 | 24
^3CZ78B4... | 13 | 26
^3HN31E1... | 14 | 28
^3S2X6B2... | 15 | 30
^A984WV0... | 16 | 32
Transformers as a method
You are not bound to static computation as transformers provide a way to obtain methods as new values.
This is done using the method
keyword:
@pw.transformer
class method_transformer:
class table(pw.ClassArg):
val: float = pw.input_attribute()
@pw.method
def method_result(self, arg) -> float:
return self.val + arg
method_table = method_transformer(guinea_pig).table
result = method_table.select(res=method_table.method_result(10))
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| res
^X1MXHYY... | 10
^YYY4HAB... | 11
^Z3QWT29... | 12
^3CZ78B4... | 13
^3HN31E1... | 14
^3S2X6B2... | 15
^A984WV0... | 16
Transformer Classes using two different tables
Now you might want to do something more complicated which requires two different tables.
You have a table matchings
which contains pairs of values a
and b
and a table profiles
which contains the profile of each value of the pairs.
You want to compute, for each pair, the sum of the profiles of the values of the pair.
First, you need the tables:
profiles = pw.debug.table_from_markdown(
"""
| profile
0 | 1
1 | 10
2 | 100
3 | 1000
"""
)
matchings = pw.debug.table_from_markdown(
"""
| a | b
0 | 0 | 2
1 | 1 | 3
"""
)
matchings = matchings.select(
a=profiles.pointer_from(matchings.a), b=profiles.pointer_from(matchings.b)
)
Now, you can do a transformer which takes the two tables as parameters.
To access a given table inside the transformer, use the notation self.transformer.my_table
.
@pw.transformer
class using_two_tables:
class profiles_table(pw.ClassArg):
profile: float = pw.input_attribute()
class matchings_table(pw.ClassArg):
a: pw.Pointer = pw.input_attribute()
b: pw.Pointer = pw.input_attribute()
@pw.output_attribute
def sum_profiles(self) -> float:
pa = self.transformer.profiles_table[self.a].profile
pb = self.transformer.profiles_table[self.b].profile
return pa + pb
result = using_two_tables(
profiles_table=profiles, matchings_table=matchings
).matchings_table
pw.debug.compute_and_print(result)
[2023-09-19T09:28:25]:INFO:Preparing Pathway computation
| sum_profiles
^X1MXHYY... | 101
^YYY4HAB... | 1010
Other topics
We hope these examples make you feel comfortable using Pathway transformer classes. You can take a look at our advanced example of transformer classes on a tree.
To continue your exploration of Pathway, you can also check out our connectors, or see directly how to use Pathway to implement classic algorithms such as PageRank.