Embedders
When storing a document in a vector store, you compute the embedding vector for the text and store the vector with a reference to the original document. You can then compute the embedding of a query and find the embedded documents closest to the query.
The following embedding wrappers are available through the Pathway xpack:
OpenAIEmbedder
- Embed text with any of OpenAI's embedding modelsLiteLLMEmbedder
- Embed text with any model available through LiteLLMSentenceTransformersEmbedder
- Embed text with any model available through SentenceTransformer (aka. SBERT) maintained by Hugging FaceGeminiEmbedder
- Embed text with any of Google's available embedding models
OpenAIEmbedder
The default model for OpenAIEmbedder
is text-embedding-3-small
.
embedder: !pw.xpacks.llm.embedders.OpenAIEmbedder
model: "text-embedding-3-small"
LiteLLMEmbedder
The model for LiteLLMEmbedder
has to be specified during initialization. No default is provided.
embedder: !pw.xpacks.llm.embedders.LiteLLMEmbedder
model: "text-embedding-3-small"
SentenceTransformerEmbedder
This SentenceTransformerEmbedder
embedder allows you to use the models from the Hugging Face Sentence Transformer models.
The model is specified during initialization. Here is a list of available models
.
embedder: !pw.xpacks.llm.embedders.SentenceTransformerEmbedder
model: "intfloat/e5-large-v2"
GeminiEmbedder
GeminiEmbedder
is the embedder for Google's Gemini Embedding Services. Available models can be found here
.
embedder: !pw.xpacks.llm.embedders.GeminiEmbedder
model: "models/text-embedding-004"